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AQUACULTURE AND ENVIRONMENT

AQUACULTURE <) ENVIRONMENT

PATHOGEN
| NEED HIGH

WATER
QUALITY!!

Conceptually, it is useful to think of fish disease
or fish health as a set of interactions among
the host, pathogen and environment.
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Humans impact the physical environment in many ways....

e
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GLOBAL CHANGE

What does the term “global
change” mean?

We understand global change to comprise
a wide range of biophysical, ecosystem and
socio-economic changes that alter the
functioning of Earth as a system on a
planetary scale (changes in climate, land
and ocean productivity, atmospheric and
water chemistry, ecosystems). The result is
a change in Earth’s ability to support life.



THREATS TO TROUT FARMS

* Climate change

* Water scarcity

* Emerging contaminants

* (Re)emerging diseases




CLIMATE CHANGE AND AQUACULTURE

The first mention of research on climate change and aquaculture in the scientific literature was
at the end of the 1980s (Sherwood, 1988) but it took more than 15 years after that for
researchers to invest significant effort on the topic.

Numbers of published scientific papers per year dealing with aquaculture and climate
change in Scopus and FAO databases, as a proxy of interest in the issue
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CLIMATE CHANGE AND AQUACULTURE

e Direct and indirect climate change drivers can be responsible for changes
in aquaculture, whether in the short- or long-term.

e Short-term impacts include loss of production or infrastructure due to
extreme events (i.e., flood, tornadoes), diseases, toxic algae and parasites.

* Long-term examples include limited access to freshwater for farming,
limited access to feeds from marine and terrestrial sources, decreased
productivity due to suboptimal farming conditions, eutrophication and

other perturbations.



CLIMATE CHANGE AND AQUACULTURE: a global overview
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Conceptual model describing the responses of fish physiological
systems to climate change
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The left column lists abiotic characteristics of freshwater ecosystems that are influenced by climate change, which, in
turn, influence five physiological systems within an individual fish. The right column describes how scientists or
managers could measure different responses resulting from climate change effects on fish physiology.



Schematic representation of the major climate change stressors in rainbow
trout farming
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and, therefore, problems in the growth rate and welfare of the fish may occur
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Water scarcity

Water makes life possible since life without
water is not sustainable. Water provides
many beneficial functions, both for the earth
and for humans—that help produce the
abundance of life around us every day.

Water covers about 70% of the planet, giving
it the unique ability to foster and sustain life.
Yet, <2.5% is freshwater, available for
consumption, of course after processing.

The three major sources of freshwater are
rainwater, surface water and groundwater.

Water scarcity is the deficiency of adequate water
resources that can meet the water demands for a
particular region.

By one definition, human populations face water
scarcity when annual water supplies in a region fall
below 1,000 m3 person?, which currently occur
throughout most countries in Northern Africa and
the Arabian Peninsula.



Contribution of ‘The water we eat!!” to water scarcity

We «eat» 3496 litres of water every day!!

‘Eating water’ — it might sound strange, but it’s the reality. This is the water
associated with the production of food we consume daily. In fact the water we
essentially need for drinking is only about 0.01% of the water we require to
produce our food.

Most of the world’s freshwater goes to agriculture, mainly for the production of
crops, livestock and aquatic organisms, such as fish and plants, as well as for the
processing and preparation of these foods and products.

At present agriculture accounts for nearly 70% of all freshwater withdrawn from
rivers, lakes, and aquifers globally (FAO, 2011) which is equivalent to 3600 km?3
year? (Including losses).



Estimated water consumption in inland aquaculture

Aquaculture in inland freshwater contribute maximum to the world aquaculture production (contributed 63% of the
world aquaculture production in 2016) and at the outlook, inland freshwater aquaculture seems as a highly water-
intensive endeavour, requiring much more water than conventional agriculture, withdrawing on average 16.9 m3 water for

per kg production (FAO, 2017).

Water use variable

Water consumption per kg
production

World total water use in inland
aquaculture (in km3/yr)

A. System associated water consumption

1. Evaporation losses 5,200 L (5.2 m?) 131

2. Infiltration losses 6,900 L (6.9 m%) 175

3. To regulate water exchange 3,100 L (3.1 m%) 79
B. Feed associated water consumption 1,700 L (1.7 m?) 44.1

C. Gross total water consumption (A + B) 16,900 L (16.9 m?) 429.1

1. Recycled water (Infiltration losses +
D. water e)Zchange lossgs) (A2 + A3) 10,000 L (10 ') 254
E. 2. Net total water consumption (C — D) 6,900 L (6.9 m?) 175.1

World Bank has estimated that, aquaculture’s contribution to world’s fish consumption will rise from
current 40% to roughly 62% by 2030; and thus consequently water demand for the sector will rise

significantly (Hussan et al., 2019).




The potential of rainbow trout farming in aguaponics

Nowadays, rapidly elevated levels of carbon dioxide (CO,) have threatened rainbow trout aquaculture and
global food security.

To increase the global aquaculture production, despite climate change, an expansion of sustainable
aquaculture systems (e.g., aquaponic systems etc.) is needed in the context of a circular economy.

Aquaponics, in combination with selective breeding and thermal acclimation, are promising management
strategies that may contribute to the development of a new form of rainbow trout farming

Modern freshwater aquaculture relies mainly on closed aquaculture systems (RAS), which reuse the same
volume of water. In these systems, the rate of water reuse ranges between 80 and 99%, therefore
reducing water requirements and the environmental impact of aquaculture.

The unification of closed aquaculture systems (RAS) and hydroponics—known as aquaponics—improves
sustainability and ensures food sufficiency, providing various significant economic and social benefits.

These innovative sustainable aquaculture systems, already implemented, are characterized as integrated
multi-trophic aguaculture (IMTA) or polycultures.



Aguaponics as a promising strategy to mitigate impacts of climate change on
rainbow trout culture

However, the rainbow trout has
not been commercially reared so
far in such systemes.

It should be noted that rainbow
trout may represent an optimum
candidate for an aquaponic
system

Experimental research of rainbow trout aquaculture in an
aquaponic system in Greece (Vasdravanidis et al., 2022).



The increase in the temperature of the water can cause thermal stress
on the fish, burdening their immune systems and leading to greater
susceptibility to diseases
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(Re)Emerging Diseases

Enteric red mouth disease

Columnaris Disease

Proliferative kidney disease

Fish Streptococcosis



Fish Streptococcosis

Warmwater Streptococcosis

Lactococcus garvieae/L. petauri
Streptococcus iniae
Streptococcus agalactiae

Streptococcus parauberis

15° C

Coldwater Streptococcosis

Vagococcus salmoninarum
Lactococcus piscium

Carnobacterium maltaromaticum




Emerging contaminants

Water contamination is a serious problem, with 22% of surface water bodies and
28% of groundwater in the European Union being significantly affected by diffuse
pollution.

e Contaminants of emerging concern (CECs) are typically divided into chemicals, as they are properly
called, and biological CECs, such as pathogens.

 CECs comprise a vast array of contaminants that have only recently appeared in water, or that are of
recent concern because they have been detected at concentrations significantly higher than expected,
and/or their risk to human and environmental health may not be fully understood

e CECs span natural and artificial chemical substances and their by-products, comprising
pharmaceuticals, personal care products (PPCPs), flame retardants (FRs), pesticides, nanoparticles,
microplastics and their transformation products, but also antibiotic resistant bacteria (ARB), antibiotic
resistant genes (ARG)
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The sources, distributions, and behavior characteristics of MPs in the aquaculture

The Types of MPs
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The sources, distributions, and behavior characteristics of MPs in the aquaculture

Table 1
The concentrations and characteristics of microplastics in the aquaculture systems.
Site Source Abundance Size Shape Composition Color Reference
Xiangshan Bay, China seawater 8.9 + 4.7 items/m’ Ave: fiber, film, fragment, PE, PP, PS, PA, PET, cellulose N/A Chen et al.
154 + 1.53 mm. foam (2018)
sediment 17.39 + 21.53 items/kg Ave: fiber, film, fragment, PE, PP, PET, Rubber, cellulose
133 +1.69mm  foam
Xiangshan Bay, China sediment 33-113 items/kg, Ave: 74 345-4998 um, fiber, film, fragment Cellulose, PA, AN, PP, PET N/A Wu et al. (2020)
items/kg Ave: 1830 um
Fish farms in Mediterranean, Spain sediment O to 213 items 0.128—5 mm fiber, fragment, pellet PE, PP, PA, cellulose black, transparent, blue, yellow, red Kriiger et al.
(2020)
Fish ponds in Changzhou, China freshwater 13 to 27 items/L <0.1-5 mm fiber, film, fragment, PE, PP, PS, PA, PET transparent, white, green, yellow, Wang et al.
pellet gray (2020)
Maowei Sea, China seawater 1.2—10.1 items/L, Ave: 4.5 + 0.1 <0.25—5 mm fiber, flake, foam, PES, PP, PE, PA, PS, POM, PU, white, yellow, blue, green, red, black Zhu et al. (2019)
items/L fragment PBT
Fish ponds in Carpathian basin, Europe freshwater 3.52—32.05 items/m?>, Ave: N/A N/A PE, PP, PS, PTFE, PAC, PES N/A Bordos et al.
13.79 + 9.26 items/m?> (2019)

sediment 0.46 to 1.62 items/kg, Ave:
0.81 + 0.37 items/kg

Fish ponds in Guangzhou, China freshwater 42.1 items/L <0.1-3 mm fiber, film, granule, PP, PE blue, purple, transparent, white, Ma et al. (2020)
fragment, pellet black, green, yellow, red
Rice-fish co-culture system in Shanghai, China freshwater 0.4 + 0.1 items/L <1-5 mm fiber, film, granule, PE, PVC, PP black, transparent, blue, white Lv et al. (2019)
sediment 10.3 + 2.2 items/kg fragment
Mussels farming in Jurujuba Cove seawater 16.4/m3 <1-5 mm, fragment, fiber, sheet, PE, PP blue, green, red, yellow, orange, Castro et al.
dominant: < 1 mm pellet black (2016)
Eel culture stations, Shanghai water 1.0 + 0.4 items/L <0.1-5 mm film, fiber, fragment, PE, PP, EA yellow, green, white, black, blue,  Lv et al. (2020)
soil 27.1 + 7.0 items/kg granule translucent
Milkfish ponds in Muara Kamal water 103.8 + 20.7 items/L N/A fiber, film, fragment, N/A N/A Priscilla and
sediments 111680 + 13204 items/kg granule Patria. (2019)
Milkfish ponds in Marunda water 90.7 + 17.4 items/L
sediments 82480 + 11226 items/kg
Shrimp-culturing farm in Longjiao Bay, China seawater 250-5150 items/m>, mean: 0.3—5 mm fiber, fragment, foam, PE, PET, PS, PP, PC, PA, PAA  granule, fibers, white, yellow, black Chen et al.
1594 items/m> (92.03%) film, granule (2020a)
<0.3 mm (7.97%)
Artificial reefs in Ma'an Archipelago, China seawater 0.2 + 0.1-0.6 + 0.2 items/L 1-5 mm fibers, fragments, PA, PE, PP, PS, cellulose, blue, transparent, black, red, green, Zhang et al.
sediment 30.0 + 0.0—-80.0 + 14.1 items/ 0.05—1 mm films cellophane yellow, white (2020b)
kg (dominant)
Eight sea cucumber farms along the Bohai Sea sediment 20 - 1040 items/kg <1 mm (82%) fibers, fragments, cellophane, polyester, PET, PE, blue, transparent, black, red, purple, Mohsen et al.
and the Yellow Sea in China 1-5 mm (18%) films PP, PA, PVA, PAN brown (2019)

(Chen et al., 2021)
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The wide use of antibiotics in aquaculture for therapeutic purpose can potentially lead to
the prevalence of antibiotic resistance genes (ARGs).

Coastal aquaculture
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Drugs contained in fish feed can persist in the aquatic environment for a long time and rapidly
spread throughout water systems, exerting selective pressure in ecosystems.



Antimicrobial resistance

Antimicrobial Resistance (AMR) refers to
microorganisms (bacteria, fungi, viruses, and parasites)

that have acquired resistance to antimicrobial
substances.

Natural Selection
While this phenomenon can

occur naturally through microbial 5550 .
adaptation to the environment, it
has been promoted by

inappropriate and excessive use
of antimicrobials.




Increasing global Antimicrobial Resistance (AMR) is a major threat to human and animal health

It threat modern human
and veterinary medicine
and undermines the
safety of our food and
environment.




The bacterial chromosome is made up of DNA and stores all the information that a
bacterial cell needs to carry out its normal functions. In addition to the chromosome,

bacteria can have small circles of DNA called plasmids that also contains genes.
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AMR in closed Aquaculture Systems

Closed flow-through systems produce
wastewater containing suspended solids and
nitrogen, phosphorous, and high microbial
loads, which will either enter the municipal
wastewater system after a number of
treatment steps, flow to wetlands, or be
treated to produce a sludge that can be added
to land as a fertilizer.

This use of aquaculture sludge has numerous
implications for the concentration and spread
of AMR genes onto food crops and into the soil
system.




Near zero-discharge recirculating aquaculture systems (RASs) are designed to produce
species at high density and minimize environmental impact by effectively managing,
collecting, and treating wastes that accumulate during fish growth for both freshwater and
marine systems.

Li et al. (2017) found that biofilms from RAS mixed
bed biofilters are a reservoir for antibiotic resistance
genes, including tetO, qnrA, and tetE.

Biofilms, however, are generally resistant to
penetration by antibiotics, which, makes the
treatment of pathogens difficult (Blancheton et al,,
2013).
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